## PROBLEMS

*2-60. The bolt is subjected to the force $\mathbf{F}$, which has components acting along the $x, y, z$ axes. If the magnitude of $\mathbf{F}$ is 80 N , and $\alpha=60^{\circ}$ and $\gamma=45^{\circ}$, determine the magnitudes of its components.

Prob. 2-60

2-61. Determine the magnitude and coordinate direction angles of the force $\mathbf{F}$ acting on the support. The component of $\mathbf{F}$ in the $x-y$ plane is 7 kN .

2-62. The force $\mathbf{F}$ acts on the bracket within the octant shown. If $F=400 \mathrm{~N}, \beta=60^{\circ}$, and $\gamma=45^{\circ}$, determine the $x, y, z$ components of $\mathbf{F}$.
$\mathbf{2 - 6 3}$. The force $\mathbf{F}$ acts on the bracket within the octant shown. If the magnitudes of the $x$ and $z$ components of $\mathbf{F}$ are $F_{x}=300 \mathrm{~N}$ and $F_{z}=600 \mathrm{~N}$, respectively, and $\beta=60^{\circ}$, determine the magnitude of $\mathbf{F}$ and its $y$ component. Also, find the coordinate direction angles $\alpha$ and $\gamma$.


Probs. 2-62/63
*2-64. Determine the magnitude and coordinate direction angles of the resultant force, and sketch this vector on the coordinate system.


Probs. 2-64

2-65. Determine the magnitude and coordinate direction angles of $\mathbf{F}_{3}$ so that the resultant of the three forces acts along the positive $y$ axis and has a magnitude of 600 N .

2-66. Determine the magnitude and coordinate direction angles of $\mathbf{F}_{3}$ so that the resultant of the three forces is zero.


Probs. 2-65/66

2-67. Express each force in Cartesian vector form and then determine the resultant force. Find the magnitude and coordinate direction angles of the resultant force.
*2-68. Determine the coordinate direction angles of $\mathbf{F}_{1}$.


Probs. 2-67/68

2-69. The stock mounted on the lathe is subjected to a force of 60 N . Determine the coordinate direction angle $\beta$ and express the force as a Cartesian vector.


Probs. 2-69
2-70. The bracket is subjected to the two forces shown. Express each force in Cartesian vector form and then determine the resultant force $\mathbf{F}_{R}$. Find the magnitude and coordinate direction angles of the resultant force.


Prob. 2-70
2-71. Determine the magnitude and coordinate direction angles of the resultant force, and sketch this vector on the coordinate system.


Prob. 2-71
*2-72. Express each force as a Cartesian vector.
2-73. Determine the magnitude and coordinate direction angles of the resultant force, and sketch this vector on the coordinate system.


Probs. 2-72/73

2-74. Determine the magnitude and coordinate direction angles of the resultant force, and sketch this vector on the coordinate system.

2-75. Specify the magnitude $F_{3}$ and directions $\alpha_{3}, \beta_{3}$, and $\gamma_{3}$ so that the resultant force of the three forces is $\mathbf{F}_{R}=\{9 \mathbf{j}\} \mathrm{kN}$.


Prob. 2-75
*2-76. The pole is subjected to the force $\mathbf{F}$, which has components acting along the $x, y, z$ axes as shown. If the magnitude of $\mathbf{F}$ is $3 \mathrm{kN}, \beta=30^{\circ}$, and $\gamma=75^{\circ}$, determine the magnitudes of its three components.

2-77. The pole is subjected to the force $\mathbf{F}$ which has components $F_{x}=1.5 \mathrm{kN}$ and $F_{z}=1.25 \mathrm{kN}$. If $\beta=75^{\circ}$, determine the magnitudes of $\mathbf{F}$ and $\mathbf{F}_{y}$.


Probs. 2-74


Probs. 2-76/77

2-78. Three forces act on the ring. Determine the magnitude and coordinate direction angles of the resultant force.


Prob. 2-78

2-79. Determine the coordinate angle $\gamma$ for $\mathbf{F}_{2}$ and then express each force acting on the bracket as a Cartesian vector.
*2-80. Determine the magnitude and coordinate direction angles of the resultant force acting on the bracket.


Probs. 2-79/80
$\mathbf{2 - 8 1}$. The pipe is subjected to the force $\mathbf{F}$, which has components acting along the $x, y, z$ axes. If the magnitude of $\mathbf{F}$ is 12 kN , and $\alpha=120^{\circ}$ and $\gamma=45^{\circ}$, determine the magnitudes of its three components.
$\mathbf{2 - 8 2}$. The pipe is subjected to the force $\mathbf{F}$, which has components $F_{x}=1.5 \mathrm{kN}$ and $F_{z}=1.25 \mathrm{kN}$. If $\beta=75^{\circ}$, determine the magnitude of $\mathbf{F}$ and $\mathbf{F}_{y}$.


2-83. If the coordinate direction angles for $\mathbf{F}_{3}$ are $\alpha_{3}=120^{\circ}, \beta_{3}=60^{\circ}$, and $\gamma_{3}=45^{\circ}$, determine the magnitude and coordinate direction angles of the resultant force acting on the eyebolt.
*2-84. If the coordinate direction angles for $\mathbf{F}_{3}$ are $\alpha_{3}=120^{\circ}, \beta_{3}=45^{\circ}$, and $\gamma_{3}=60^{\circ}$, determine the magnitude and coordinate direction angles of the resultant force acting on the eyebolt.

2-85. If the direction of the resultant force acting on the eyebolt is defined by the unit vector $\mathbf{u}_{F_{R}}=\cos 30^{\circ} \mathbf{j}+$ $\sin 30^{\circ} \mathbf{k}$, determine the coordinate direction angles of $\mathbf{F}_{3}$ and the magnitude of $\mathbf{F}_{R}$.


Probs. 2-83/84/85

