PROBLEMS

***2–32.** Determine the magnitude of the resultant force and its direction, measured clockwise from the positive *x* axis.

Prob. 2-32

2–33. Express each of the three forces acting on the support in Cartesian vector form and determine the magnitude of the resultant force and its direction, measured clockwise from positive x axis.

Prob. 2-33

2-34. Resolve each force acting on the *gusset plate* into its x and y components, and express each force as a Cartesian vector.

2–35. Determine the magnitude of the resultant force acting on the *gusset plate* and its direction, measured counterclockwise from the positive x axis.

Probs. 2-34/35

*2–36. Resolve \mathbf{F}_1 and \mathbf{F}_2 into their x and y components.

2–37. Determine the magnitude of the resultant force and its direction measured counterclockwise from the positive *x* axis.

Probs. 2-36/37

2–38. Determine the magnitude of the resultant force and its direction measured counterclockwise from the positive *x* axis.

Prob. 2-38

61

2–39. The three forces are applied to the bracket. Determine the range of values for the magnitude of force \mathbf{P} so that the resultant of the three forces does not exceed 2400 N.

90

800 N

Prob. 2-39

2–41. Determine the magnitude of the resultant force and its direction measured counterclockwise from the positive *x* axis.

2–42. Three forces act on the ring. Determine the range of values for the magnitude of \mathbf{P} so that the magnitude of the resultant force does not exceed 2500 N. Force \mathbf{P} is always directed to the right.

Probs. 2-40/41

2–43. Express \mathbf{F}_1 , \mathbf{F}_2 , and \mathbf{F}_3 as Cartesian vectors.

*2-44. Determine the magnitude of the resultant force and its direction measured counterclockwise from the positive x axis.

2-45. The three concurrent forces acting on the post produce a zero resultant force $\mathbf{F}_R = \mathbf{0}$. If $F_2 = \frac{1}{2}F_1$, and \mathbf{F}_1 is to be 90° from \mathbf{F}_2 as shown, determine the required magnitude of F_3 expressed in terms of F_1 and the angle θ .

3000 N

Prob. 2-42

Prob. 2-45

2-46. Three forces act on the bracket. Determine the magnitude and direction θ of \mathbf{F}_1 so that the resultant force is directed along the positive x' axis and has a magnitude of 800 N.

2–47. If $F_1 = 300$ N and $\theta = 10^\circ$, determine the magnitude of the resultant force and its direction measured counterclockwise from the positive x' axis.

Probs. 2-46/47

*2–48. Determine the magnitude and orientation θ of \mathbf{F}_B so that the resultant force is directed along the positive y axis and has a magnitude of 1500 N.

2-49. If $F_B = 600$ N and $\theta = 20^\circ$, determine the magnitude of the resultant force and its direction measured counterclockwise from the positive *y* axis.

Probs. 2-48/49

2–50. The four concentric forces act on the post. Determine the resultant force and its direction, measured counterclockwise from the positive x axis.

2–51. Express \mathbf{F}_1 , \mathbf{F}_2 and \mathbf{F}_3 as Cartesian vectors.

*2–52. Determine the magnitude of the resultant force and its direction, measured counterclockwise from the positive x axis.

63

Probs. 2–51/52

2-53. Determine the resultant force acting on the hook, and its direction measured clockwise from the positive x axis.

x

 $F_1 = 500 \text{ N}$

60°

2–54. Express \mathbf{F}_1 and \mathbf{F}_2 as Cartesian vectors.

2-55. Determine the magnitude of the resultant force and its direction measured counterclockwise from the positive x axis.

Prob. 2-53

*2-56. Three forces act on the bracket. Determine the magnitude and direction θ of **F** so that the resultant force is directed along the positive x' axis and has a magnitude of 8 kN.

2–57. If F = 5 kN and $\theta = 30^{\circ}$, determine the magnitude of the resultant force and its direction measured counterclockwise from the positive x axis.

2-59. If the resultant force acting on the bracket is required to be a minimum, determine the magnitudes of \mathbf{F}_1 and the resultant force. Set $\phi = 30^{\circ}$.

determine the magnitude of \mathbf{F}_1 and its direction ϕ .

Probs. 2-54/55

 $F_2 = 800 \text{ N}$