PROBLEMS

*2-32. Determine the magnitude of the resultant force and its direction, measured clockwise from the positive x axis.

Prob. 2-32

2-33. Express each of the three forces acting on the support in Cartesian vector form and determine the magnitude of the resultant force and its direction, measured clockwise from positive x axis.

Prob. 2-33

2-34. Resolve each force acting on the gusset plate into its x and y components, and express each force as a Cartesian vector.

2-35. Determine the magnitude of the resultant force acting on the gusset plate and its direction, measured counterclockwise from the positive x axis.

Probs. 2-34/35
*2-36. Resolve \mathbf{F}_{1} and \mathbf{F}_{2} into their x and y components.
2-37. Determine the magnitude of the resultant force and its direction measured counterclockwise from the positive x axis.

Probs. 2-36/37
2-38. Determine the magnitude of the resultant force and its direction measured counterclockwise from the positive x axis.

Prob. 2-38

2-39. The three forces are applied to the bracket. Determine the range of values for the magnitude of force \mathbf{P} so that the resultant of the three forces does not exceed 2400 N .

Prob. 2-39
*2-40. Determine the x and y components of \mathbf{F}_{1} and \mathbf{F}_{2}.
2-41. Determine the magnitude of the resultant force and its direction measured counterclockwise from the positive x axis.

Probs. 2-40/41

2-42. Three forces act on the ring. Determine the range of values for the magnitude of \mathbf{P} so that the magnitude of the resultant force does not exceed 2500 N . Force \mathbf{P} is always directed to the right.

Prob. 2-42

2-43. Express $\mathbf{F}_{1}, \mathbf{F}_{2}$, and \mathbf{F}_{3} as Cartesian vectors.
*2-44. Determine the magnitude of the resultant force and its direction measured counterclockwise from the positive x axis.

Probs. 2-43/44

2-45. The three concurrent forces acting on the post produce a zero resultant force $\mathbf{F}_{R}=\mathbf{0}$. If $F_{2}=\frac{1}{2} F_{1}$, and \mathbf{F}_{1} is to be 90° from \mathbf{F}_{2} as shown, determine the required magnitude of F_{3} expressed in terms of F_{1} and the angle θ.

Prob. 2-45

2-46. Three forces act on the bracket. Determine the magnitude and direction θ of \mathbf{F}_{1} so that the resultant force is directed along the positive x^{\prime} axis and has a magnitude of 800 N .

2-47. If $F_{1}=300 \mathrm{~N}$ and $\theta=10^{\circ}$, determine the magnitude of the resultant force and its direction measured counterclockwise from the positive x^{\prime} axis.

Probs. 2-46/47
*2-48. Determine the magnitude and orientation θ of \mathbf{F}_{B} so that the resultant force is directed along the positive y axis and has a magnitude of 1500 N .

2-49. If $F_{B}=600 \mathrm{~N}$ and $\theta=20^{\circ}$, determine the magnitude of the resultant force and its direction measured counterclockwise from the positive y axis.

2-50. The four concentric forces act on the post. Determine the resultant force and its direction, measured counterclockwise from the positive x axis.

Prob. 2-50

2-51. Express $\mathbf{F}_{1}, \mathbf{F}_{2}$ and \mathbf{F}_{3} as Cartesian vectors.
*2-52. Determine the magnitude of the resultant force and its direction, measured counterclockwise from the positive x axis.

Probs. 2-51/52

2-53. Determine the resultant force acting on the hook, and its direction measured clockwise from the positive x axis.

Prob. 2-53

2-54. Express \mathbf{F}_{1} and \mathbf{F}_{2} as Cartesian vectors.
2-55. Determine the magnitude of the resultant force and its direction measured counterclockwise from the positive x axis.
*2-56. Three forces act on the bracket. Determine the magnitude and direction θ of \mathbf{F} so that the resultant force is directed along the positive x^{\prime} axis and has a magnitude of 8 kN .

2-57. If $F=5 \mathrm{kN}$ and $\theta=30^{\circ}$, determine the magnitude of the resultant force and its direction measured counterclockwise from the positive x axis.

Probs. 2-56/57

2-58. If the magnitude of the resultant force acting on the bracket is to be 450 N directed along the positive u axis, determine the magnitude of \mathbf{F}_{1} and its direction ϕ.
$\mathbf{2 - 5 9}$. If the resultant force acting on the bracket is required to be a minimum, determine the magnitudes of \mathbf{F}_{1} and the resultant force. Set $\phi=30^{\circ}$.

Probs. 2-58/59

