PROBLEMS

2-86. Determine the lengths of wires *AD*, *BD*, and *CD*. The ring at *D* is midway between *A* and *B*.

*2-88. The door is held opened by means of two chains. If the tension in *AB* and *CD* is $\mathbf{F}_A = 300$ N and $\mathbf{F}_C = 250$ N, respectively, express each of these forces in Cartesian vector form.

2–87. Determine the magnitude and coordinate direction angles of the resultant force acting at *A*.

2–89. Determine the length of the connecting rod AB by first formulating a position vector from A to B and then determining its magnitude.

Prob. 2-87

83

 $F_{AC} = 400 \text{ N}$

2 m

(

4−1 m

2–90. Determine the magnitude and coordinate direction angles of the resultant force.

0.75 m

 $F_{AB} = 250 \text{ N}$

2 m

 40°

3 m

B

Prob. 2–90

2–91. The 8-m-long cable is anchored to the ground at *A*. If x = 4 m and y = 2 m, determine the coordinate *z* to the highest point of attachment along the column.

*2–92. The 8-m-long cable is anchored to the ground at A. If z = 5 m, determine the location +x, +y of the support at A. Choose a value such that x = y.

1100.2-95

2-94. If $F_B = 560$ N and $F_C = 700$ N, determine the magnitude and coordinate direction angles of the resultant force acting on the flag pole.

2-95. If $F_B = 700$ N, and $F_C = 560$ N, determine the magnitude and coordinate direction angles of the resultant force acting on the flag pole.

Probs. 2-91/92

2

Probs. 2–94/95

*2–96. Determine the magnitude and coordinate direction angles of the resultant force acting at point *A* on the post.

 F_{AB}

3 m

= 200 N

2 m

4 m

 $F_{AC} = 150 \text{ N}$

C

3 m

Probs. 2-96

2–97. Represent each cable force as a Cartesian vector.

2–98. Determine the magnitude and coordinate direction angles of the resultant of the two forces acting at point *A*.

2-99. Determine the position (x, y, 0) for fixing cable *BA* so that the resultant force exerted on the pole is directed along its axis, from *B* toward *O*. Also, what is the magnitude of the resultant force?

*2-100. Determine the magnitude and coordinate direction

angles α , β , γ of the resultant force acting on the pole. Set

x = 4 m, y = 2 m.

Probs. 2-99/100

2–101. Position vectors along the robotic arm from *O* to *B* and *B* to *A* are $\mathbf{r}_{OB} = \{100\mathbf{i} + 300\mathbf{j} + 400\mathbf{k}\}$ mm and $\mathbf{r}_{BA} = \{350\mathbf{i} + 225\mathbf{j} - 640\mathbf{k}\}$ mm, respectively. Determine the distance from *O* to the grip at *A*.

2–102. If $\mathbf{r}_{OA} = \{0.5\mathbf{i} + 4\mathbf{j} + 0.25\mathbf{k}\}$ m and $\mathbf{r}_{OB} = \{0.3\mathbf{i} + 2\mathbf{j} + 2\mathbf{k}\}$ m, express \mathbf{r}_{BA} as a Cartesian vector.

85