PROBLEMS

2-103. Determine the angles θ and ϕ between the wire segments.

Probs. 2-103/105
*2-104. Determine the angle θ between the two cords.

Prob. 2-104

2-105. Given the three vectors \mathbf{A}, \mathbf{B}, and \mathbf{D}, show that $\mathbf{A} \cdot(\mathbf{B}+\mathbf{D})=(\mathbf{A} \cdot \mathbf{B})+(\mathbf{A} \cdot \mathbf{D})$.

2-106. Determine the design angle $\theta\left(0^{\circ} \leq \theta \leq 90^{\circ}\right)$ for strut $A B$ so that the $400-\mathrm{N}$ horizontal force has a component of 500 N directed from A towards C. What is the component of force acting along member $A B$? Take $\phi=40^{\circ}$.

Prob. 2-106

2-107. Determine the components of \mathbf{F} that act along $\operatorname{rod} A C$ and perpendicular to it. Point B is located at the midpoint of the rod.
*2-108. Determine the components of \mathbf{F} that act along $\operatorname{rod} A C$ and perpendicular to it. Point B is located 3 m along the rod from end C.

Probs. 2-107/108

2-109. Determine the magnitudes of the components of $F=600 \mathrm{~N}$ acting along and perpendicular to segment $D E$ of the pipe assembly.

Prob. 2-109

2-110. The window is held open by cable $A B$. Determine the length of the cable and express the $30-\mathrm{N}$ force acting at A along the cable as a Cartesian vector.

Prob. 2-110

2-111. If $\mathbf{F}=\{16 \mathbf{i}+10 \mathbf{j}-14 \mathbf{k}\} \mathbf{N}$, determine the magnitude of the projection of \mathbf{F} along the axis of the pole and perpendicular to it.

Prob. 2-111
*2-112. Determine the angle θ between the two cables.
2-113. Determine the magnitude of the projection of the force \mathbf{F}_{1} along cable $A C$.

Probs. 2-112/113

2-114. A force of $F=80 \mathrm{~N}$ is applied to the handle of the wrench. Determine the angle θ between the tail of the force and the handle $A B$.

Probs. 2-114

2-115. Determine the angle θ between the sides of the triangular plate.
*2-116 Determine the length of side $B C$ of the triangular plate. Solve the problem by finding the magnitude of $\mathbf{r}_{B C}$; then check the result by first finding $\theta, r_{A B}$, and $r_{A C}$ and then using the cosine law.

Probs. 2-115/116

2-117. Determine the angle θ between the cables $A B$ and $A C$.

2-118. Determine the magnitude of the projection of the force $\mathbf{F}=\{400 \mathbf{i}-200 \mathbf{j}+500 \mathbf{k}\} \mathbf{N}$ acting along the cable $B A$.

2-119. Determine the magnitude of the projection of the force $\mathbf{F}=\{400 \mathbf{i}-200 \mathbf{j}+500 \mathbf{k}\} \mathbf{N}$ acting along the cable $C A$.

Probs. 2-117/118/119
*2-120. Determine the magnitudes of the projected components of the force $\mathbf{F}=[60 \mathbf{i}+12 \mathbf{j}-40 \mathbf{k}] \mathrm{N}$ along the cables $A B$ and $A C$.

2-121. Determine the angle θ between cables $A B$ and $A C$.

Probs. 2-120/121

2-122. Determine the angle θ between $B A$ and $B C$.
2-123. Determine the magnitude of the projected component of the 3 kN force acting along the axis $B C$ of the pipe.

Prob. 2-122/123
*2-124. Determine the magnitude of the projection of force $F=600 \mathrm{~N}$ along the u axis.

Prob. 2-124

2-125. Determine the magnitude of the projected component of \mathbf{r}_{1} along \mathbf{r}_{2}, and the projection of \mathbf{r}_{2} along \mathbf{r}_{1}.

Prob. 2-125

2-126. Determine the projected component of the $80-\mathrm{N}$ force acting along the axis $A B$ of the pipe.

Prob. 2-126

2-127. Determine the angles θ and ϕ made between the axes $O A$ of the flag pole and $A B$ and $A C$, respectively, of each cable.

Prob. 2-127
*2-128. If the force $F=100 \mathrm{~N}$ lies in the plane $D B E C$, which is parallel to the $x-z$ plane, and makes an angle of 10° with the extended line $D B$ as shown, determine the angle that \mathbf{F} makes with the diagonal $A B$ of the crate.

Prob. 2-128

2-129. Determine the magnitudes of the projection of the force acting along the x and y axes.

Prob. 2-129

2-130. Determine the magnitude of the projection of the force acting along line $O A$.

Prob. 2-130

