PROBLEMS

2–103. Determine the angles θ and ϕ between the wire segments.

2–106. Determine the design angle θ (0° $\leq \theta \leq$ 90°) for strut *AB* so that the 400-N horizontal force has a component of 500 N directed from *A* towards *C*.What is the component of force acting along member *AB*? Take $\phi = 40^{\circ}$.

Prob. 2-106

Probs. 2-103/105

2–107. Determine the components of **F** that act along rod AC and perpendicular to it. Point B is located at the midpoint of the rod.

*2–108. Determine the components of **F** that act along rod AC and perpendicular to it. Point *B* is located 3 m along the rod from end *C*.

Prob. 2–104

2-105. Given the three vectors **A**, **B**, and **D**, show that $\mathbf{A} \cdot (\mathbf{B} + \mathbf{D}) = (\mathbf{A} \cdot \mathbf{B}) + (\mathbf{A} \cdot \mathbf{D}).$

2–109. Determine the magnitudes of the components of F = 600 N acting along and perpendicular to segment *DE* of the pipe assembly.

2–111. If $\mathbf{F} = \{16\mathbf{i} + 10\mathbf{j} - 14\mathbf{k}\}$ N, determine the magnitude of the projection of **F** along the axis of the pole and perpendicular to it.

2–110. The window is held open by cable AB. Determine the length of the cable and express the 30-N force acting at A along the cable as a Cartesian vector.

*2–112. Determine the angle θ between the two cables.

2–113. Determine the magnitude of the projection of the force \mathbf{F}_1 along cable *AC*.

Probs. 2-112/113

2–114. A force of F = 80 N is applied to the handle of the wrench. Determine the angle θ between the tail of the force and the handle AB.

Probs. 2-114

2–115. Determine the angle θ between the sides of the triangular plate.

*2–116 Determine the length of side *BC* of the triangular plate. Solve the problem by finding the magnitude of \mathbf{r}_{BC} ; then check the result by first finding θ , r_{AB} , and r_{AC} and then using the cosine law.

2–117. Determine the angle θ between the cables AB and AC.

2-118. Determine the magnitude of the projection of the force $\mathbf{F} = \{400\mathbf{i} - 200\mathbf{j} + 500\mathbf{k}\}$ N acting along the cable BA.

2-119. Determine the magnitude of the projection of the force $\mathbf{F} = \{400\mathbf{i} - 200\mathbf{j} + 500\mathbf{k}\}$ N acting along the cable CA.

Probs. 2-117/118/119

*2-120. Determine the magnitudes of the projected components of the force $\mathbf{F} = [60\mathbf{i} + 12\mathbf{j} - 40\mathbf{k}]$ N along the cables AB and AC.

2–121. Determine the angle θ between cables *AB* and *AC*.

3 m 4 m 1 m 3 m 5 m

Probs. 2-115/116

2–122. Determine the angle θ between *BA* and *BC*.

2–123. Determine the magnitude of the projected component of the 3 kN force acting along the axis BC of the pipe.

2–125. Determine the magnitude of the projected component of \mathbf{r}_1 along \mathbf{r}_2 , and the projection of \mathbf{r}_2 along \mathbf{r}_1 .

Prob. 2-122/123

2–126. Determine the projected component of the 80-N force acting along the axis *AB* of the pipe.

*2–124. Determine the magnitude of the projection of force F = 600 N along the *u* axis.

Prob. 2-124

95

2–127. Determine the angles θ and ϕ made between the axes *OA* of the flag pole and *AB* and *AC*, respectively, of each cable.

2–129. Determine the magnitudes of the projection of the force acting along the *x* and *y* axes.

*2-128. If the force F = 100 N lies in the plane *DBEC*, which is parallel to the x-z plane, and makes an angle of 10° with the extended line *DB* as shown, determine the angle that **F** makes with the diagonal *AB* of the crate.

2–130. Determine the magnitude of the projection of the force acting along line *OA*.

