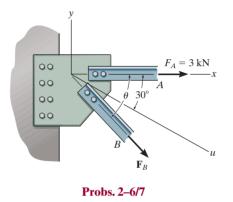
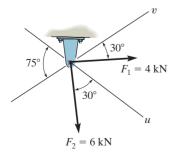

PROBLEMS

2–1. If $\theta = 60^{\circ}$ and F = 450 N, determine the magnitude of the resultant force and its direction, measured counterclockwise from the positive *x* axis.

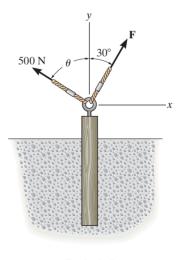

2–2. If the magnitude of the resultant force is to be 500 N, directed along the positive y axis, determine the magnitude of force **F** and its direction θ .

Probs. 2–1/2

2-6. If $F_B = 2 \text{ kN}$ and the resultant force acts along the positive *u* axis, determine the magnitude of the resultant force and the angle θ .

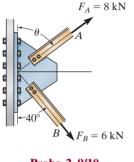

2–7. If the resultant force is required to act along the positive *u* axis and have a magnitude of 5 kN, determine the required magnitude of \mathbf{F}_B and its direction θ .

2–3. Determine the magnitude of the resultant force $\mathbf{F}_R = \mathbf{F}_1 + \mathbf{F}_2$ and its direction, measured clockwise from the positive *u* axis.


*2-4. Resolve the force \mathbf{F}_1 into components along the *u* and *v* axes and determine the magnitudes of the components.

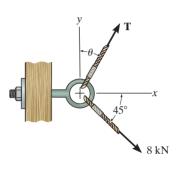
2–5. Resolve the force \mathbf{F}_2 into components along the *u* and *v* axes and determine the magnitudes of the components.

Probs. 2-3/4/5


*2-8. Two forces are applied at the end of a screw eye in order to remove the post. Determine the angle $\theta(0^{\circ} \le \theta \le 90^{\circ})$ and the magnitude of force **F** so that the resultant force acting on the post is directed vertically upward and has a magnitude of 750 N.

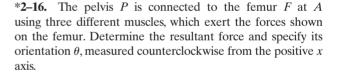
2–9. If $\theta = 60^\circ$, determine the magnitude of the resultant force and its direction measured clockwise from the horizontal.

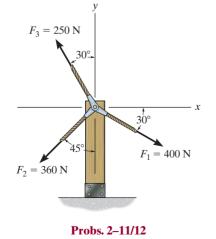
2–10. Determine the angle θ for connecting member A to the plate so that the resultant force of \mathbf{F}_A and \mathbf{F}_B is directed horizontally to the right. Also, what is the magnitude of the resultant force?

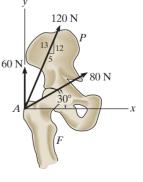


2–13. If $\theta = 30^{\circ}$ and T = 6 kN, determine the magnitude of the resultant force acting on the eyebolt and its direction measured clockwise from the positive *x* axis.

2–14. If $\theta = 60^{\circ}$ and T = 5 kN, determine the magnitude of the resultant force acting on the eyebolt and its direction measured clockwise from the positive *x* axis.

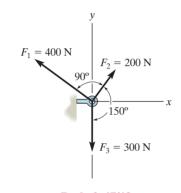

2–15. If the magnitude of the resultant force is to be 9 kN directed along the positive *x* axis, determine the magnitude of force **T** acting on the eyebolt and its angle θ .




Probs. 2–13/14/15

2–11. Determine the magnitude of the resultant force $\mathbf{F}_{R} = \mathbf{F}_{1} + \mathbf{F}_{2}$ and its orientation θ , measured clockwise from the positive *x* axis.

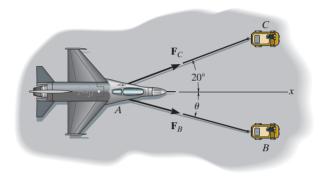
*2–12. Determine the magnitude of the resultant force $\mathbf{F}_R = \mathbf{F}_1 + \mathbf{F}_3$ and its orientation θ , measured counterclockwise from the positive *x* axis.



51

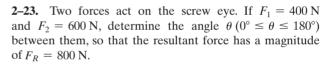
Prob. 2-16

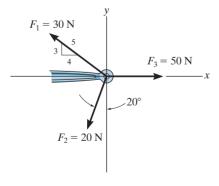
2–17. Determine the magnitude and direction of the resultant force, \mathbf{F}_R measured counterclockwise from the positive *x* axis. Solve the problem by first finding the resultant $\mathbf{F}' = \mathbf{F}_1 + \mathbf{F}_2$ and then forming $\mathbf{F}_R = \mathbf{F}' + \mathbf{F}_3$.


2–18. Determine the magnitude and direction of the resultant force, \mathbf{F}_R measured counterclockwise from the positive *x* axis. Solve the problem by first finding the resultant $\mathbf{F}' = \mathbf{F}_2 + \mathbf{F}_3$ and then forming $\mathbf{F}_R = \mathbf{F}' + \mathbf{F}_1$.

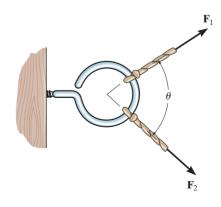
Prob. 2-17/18

2–21. Determine the magnitude of the two towing forces \mathbf{F}_B and \mathbf{F}_C if the resultant force has a magnitude $F_R = 10$ kN and is directed along the positive *x* axis. Set $\theta = 15^{\circ}$.

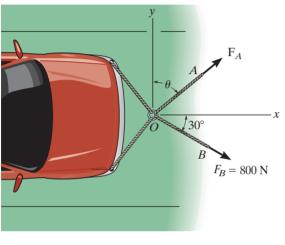

2-22. If the resultant \mathbf{F}_R of the two forces acting on the jet aircraft is to be directed along the positive x axis and have a magnitude of 10 kN, determine the angle θ of the cable attached to the truck at B so that F_B is a minimum. What is the magnitude of force in each cable when this occurs?


Probs. 2-21/22

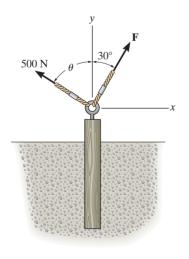
2–19. Determine the magnitude and direction of the resultant $\mathbf{F}_R = \mathbf{F}_1 + \mathbf{F}_2 + \mathbf{F}_3$ of the three forces by first finding the resultant $\mathbf{F}' = \mathbf{F}_1 + \mathbf{F}_2$ and then finding $\mathbf{F}_R = \mathbf{F}' + \mathbf{F}_3$.


*2-20. Determine the magnitude and direction of the resultant $\mathbf{F}_R = \mathbf{F}_1 + \mathbf{F}_2 + \mathbf{F}_3$ of the three forces by first finding the resultant $\mathbf{F}' = \mathbf{F}_2 + \mathbf{F}_3$ and then finding $\mathbf{F}_R = \mathbf{F}' + \mathbf{F}_1$.

*2–24. Two forces \mathbf{F}_1 and \mathbf{F}_2 act on the screw eye. If their lines of action are at an angle θ apart and the magnitude of each force is $F_1 = \mathbf{F}_2 = F$, determine the magnitude of the resultant force \mathbf{F}_R and the angle between \mathbf{F}_R and \mathbf{F}_1 .


Probs. 2-19/20

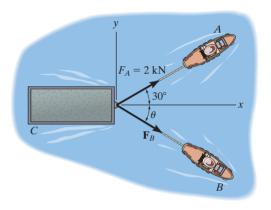
Probs. 2-23/24


2–25. Determine the magnitude and direction θ of \mathbf{F}_A so that the resultant force is directed along the positive *x* axis and has a magnitude of 1250 N.

2–26. Determine the magnitude of the resultant force acting on the ring at *O*, if $F_A = 750$ N and $\theta = 45^\circ$. What is its direction, measured counterclockwise from the positive *x* axis?

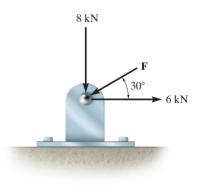
Probs. 2-25/26

2–27. Two forces act on the screw eye. If F = 600 N, determine the magnitude of the resultant force and the angle θ if the resultant force is directed vertically upward.



Probs. 2-27

*2–28. If the resultant force of the two tugboats is 3 kN, directed along the positive x axis, determine the required magnitude of force \mathbf{F}_B and its direction θ .


2–29. If $F_B = 3 \text{ kN}$ and $\theta = 45^\circ$, determine the magnitude of the resultant force and its direction measured clockwise from the positive *x* axis.

2–30. If the resultant force of the two tugboats is required to be directed toward the positive *x* axis, and F_B is to be a minimum, determine the magnitude of \mathbf{F}_R and \mathbf{F}_B and the angle θ .

Probs. 2-28/29/30

2–31. Determine the magnitude of force **F** so that the resultant \mathbf{F}_R of the three forces is as small as possible. What is the minimum magnitude of \mathbf{F}_R ?

53

Probs. 2-31