PROBLEMS

All solutions must include a free-body diagram.

3–43. The three cables are used to support the 40-kg flowerpot. Determine the force developed in each cable for equilibrium.

3-45. Determine the stretch in each of the two springs required to hold the 20-kg crate in the equilibrium position shown. Each spring has an unstretched length of 2 m and a stiffness of k = 300 N/m.

3-46. If a vertical force of 2.5 kN is applied to the hook at A, determine the tension in each of the three cables for equilibrium. Set d = 1 m.

Prob. 3-43

*3-44. Determine the magnitudes of \mathbf{F}_1 , \mathbf{F}_2 , and \mathbf{F}_3 for equilibrium of the particle.

3

***3–64.** Determine the tension in each cable for equilibrium.

3–66. The crate has a mass of 130 kg. Determine the tension developed in each cable for equilibrium.

3–65. If the maximum force in each rod can not exceed 1500 N, determine the greatest mass of the crate that can be supported.

3–67. Determine the force in each of the three cables needed to support the tractor tread assembly, which has a mass of 8 Mg.

Prob. 3-65

Prob. 3-67