PROBLEMS

All solutions must include a free-body diagram.

3-43. The three cables are used to support the $40-\mathrm{kg}$ flowerpot. Determine the force developed in each cable for equilibrium.

Prob. 3-43
*3-44. Determine the magnitudes of $\mathbf{F}_{1}, \mathbf{F}_{2}$, and \mathbf{F}_{3} for equilibrium of the particle.

Prob. 3-44

3-45. Determine the stretch in each of the two springs required to hold the $20-\mathrm{kg}$ crate in the equilibrium position shown. Each spring has an unstretched length of 2 m and a stiffness of $k=300 \mathrm{~N} / \mathrm{m}$.

Prob. 3-45

3-46. If a vertical force of 2.5 kN is applied to the hook at A, determine the tension in each of the three cables for equilibrium. Set $d=1 \mathrm{~m}$.

Prob. 3-46
*3-64. Determine the tension in each cable for equilibrium.

Prob. 3-64

3-65. If the maximum force in each rod can not exceed 1500 N , determine the greatest mass of the crate that can be supported.

Prob. 3-65

3-66. The crate has a mass of 130 kg . Determine the tension developed in each cable for equilibrium.

Prob. 3-66

3-67. Determine the force in each of the three cables needed to support the tractor tread assembly, which has a mass of 8 Mg .

Prob. 3-67

