PROBLEMS

4-1. The man exerts the two forces on the handle of the shovel. Determine the resultant moment of these forces about the blade at A.

Prob. 4-1

4-2. Determine the magnitude and directional sense of the moment of the force at A about point O.

4-3. Determine the magnitude and directional sense of the moment of the force at A about point P.

Probs. 4-2/3
*4-4. If $\theta=45^{\circ}$, determine the moment produced by the 4-kN force about point A.

4-5. If the moment produced by the $4-\mathrm{kN}$ force about point A is $10 \mathrm{kN} \cdot \mathrm{m}$ clockwise, determine the angle θ, where $0^{\circ} \leq \theta \leq 90^{\circ}$.

Probs. 4-4/5

4-6. Determine the moment of each of the three forces about point A.

4-7. Determine the moment of each of the three forces about point B.

Probs. 4-6/7
*4-8. The torque wrench $A B C$ is used to measure the moment or torque applied to a bolt when the bolt is located at A and a force is applied to the handle at C. The mechanic reads the torque on the scale at B. If an extension $A O$ of length d is used on the wrench, determine the required scale reading if the desired torque on the bolt at O is to be M.

Prob. 4-8

4-9. The cable exerts a force of $P=6 \mathrm{kN}$ at the end of the 8 -m-long crane boom. If $\theta=30^{\circ}$, determine the placement x of the boom at B so that this force creates a maximum moment about point O. What is this moment?

4-10. The cable exerts a force of $P=6 \mathrm{kN}$ at the end of the 8 -m-long crane boom. If $x=10 \mathrm{~m}$, determine the angle θ of the boom so that this force creates a maximum moment about point O. What is this moment?

Probs. 4-9/10

4-11. Determine the angle θ at which the $500-\mathrm{N}$ force must act at A so that the moment of this force about point B is equal to zero.

Prob. 4-11
*4-12. A force of 80 N acts on the handle of the paper cutter at A. If $\theta=60^{\circ}$, determine the moment created by this force about the hinge at O. At what angle θ should the force be applied so that the moment it creates about point O is a maximum (clockwise)? What is this maximum moment?

Prob. 4-12

4-13. The member is subjected to a force of $F=6 \mathrm{kN}$. If $\theta=45^{\circ}$, determine the moment produced by \mathbf{F} about point A.

4-14. Determine the angle $\theta\left(0^{\circ} \leq \theta \leq 180^{\circ}\right)$ of the force \mathbf{F} so that it produces a maximum moment and a minimum moment about point A. Also, what are the magnitudes of these maximum and minimum moments?

Probs. 4-13/14

4-15. The connected bar $B C$ is used to increase the lever arm of the crescent wrench as shown. If a clockwise moment of $M_{A}=120 \mathrm{~N} \cdot \mathrm{~m}$ is needed to tighten the bolt at A and the force $F=200 \mathrm{~N}$, determine the required extension d in order to develop this moment.
*4-16. The connected bar $B C$ is used to increase the lever arm of the crescent wrench as shown. If a clockwise moment of $M_{A}=120 \mathrm{~N} \cdot \mathrm{~m}$ is needed to tighten the nut at A and the extension $d=300 \mathrm{~mm}$, determine the required force \mathbf{F} in order to develop this moment.

Probs. 4-15/16
4-17. The 70-N force acts on the end of the pipe at B. Determine (a) the moment of this force about point A, and (b) the magnitude and direction of a horizontal force, applied at C, which produces the same moment. Take $\theta=60^{\circ}$.

4-18. The $70-\mathrm{N}$ force acts on the end of the pipe at B. Determine the angles $\theta\left(0^{\circ} \leq \theta \leq 180^{\circ}\right)$ of the force that will produce maximum and minimum moments about point A. What are the magnitudes of these moments?

Probs. 4-17/18

4-19. The tower crane is used to hoist the $2-\mathrm{Mg}$ load upward at constant velocity. The $1.5-\mathrm{Mg}$ jib $B D, 0.5-\mathrm{Mg}$ jib $B C$, and $6-\mathrm{Mg}$ counterweight C have centers of mass at G_{1}, G_{2}, and G_{3}, respectively. Determine the resultant moment produced by the load and the weights of the tower crane jibs about point A and about point B.
*4-20. The tower crane is used to hoist a $2-\mathrm{Mg}$ load upward at constant velocity. The $1.5-\mathrm{Mg} j \mathrm{jib} B D$ and $0.5-\mathrm{Mg}$ jib $B C$ have centers of mass at G_{1} and G_{2}, respectively. Determine the required mass of the counterweight C so that the resultant moment produced by the load and the weights of the tower crane jibs about point A is zero. The center of mass for the counterweight is located at G_{3}.

Probs. 4-19/20

4-21. Old clocks were constructed using a fusee B to drive the gears and watch hands. The purpose of the fusee is to increase the leverage developed by the mainspring A as it uncoils and thereby loses some of its tension. The mainspring can develop a torque (moment) $T_{s}=k \theta$, where $k=0.015$ $\mathrm{N} \cdot \mathrm{m} / \mathrm{rad}$ is the torsional stiffness and θ is the angle of twist of the spring in radians. If the torque T_{f} developed by the fusee is to remain constant as the mainspring winds down, and $x=10 \mathrm{~mm}$ when $\theta=4 \mathrm{rad}$, determine the required radius of the fusee when $\theta=3 \mathrm{rad}$.

Prob. 4-21

