

F4–10. Determine the moment of force **F** about point *O*. Express the result as a Cartesian vector.

Prob. F4-10

F4–11. Determine the moment of force **F** about point *O*. Express the result as a Cartesian vector.

0.4 m

PROBLEMS

this force about point A.

this force about point B.

4-22. The pipe assembly is subjected to the force of

 $\mathbf{F} = \{600\mathbf{i} + 800\mathbf{j} - 500\mathbf{k}\}$ N. Determine the moment of

4-23. The pipe assembly is subjected to the force of $\mathbf{F} = \{600\mathbf{i} + 800\mathbf{j} - 500\mathbf{k}\}$ N. Determine the moment of

7

*4-24. If A, B, and D are given vectors, prove the distributive law for the vector cross product, i.e., $\mathbf{A} \times (\mathbf{B} + \mathbf{D}) = (\mathbf{A} \times \mathbf{B}) + (\mathbf{A} \times \mathbf{D}).$

4–25. Prove the triple scalar product identity $\mathbf{A} \cdot (\mathbf{B} \times \mathbf{C}) = (\mathbf{A} \times \mathbf{B}) \cdot \mathbf{C}.$

4-26. Given the three nonzero vectors A, B, and C, show that if $\mathbf{A} \cdot (\mathbf{B} \times \mathbf{C}) = 0$, the three vectors *must* lie in the same plane.

4–27. The man pulls on the rope with a force of F = 20 N. Determine the moment of this force about the base of the pole at O. Solve the problem two ways, i.e., by using a position vector from O to A, then O to B.

*4-28. Determine the smallest force *F* that must be applied to the rope in order to create a moment of M = 900 N·m at point O.

4-31. The 20-N horizontal force acts on the handle of the socket wrench. What is the moment of this force about point B. Specify the coordinate direction angles α , β , γ of the moment axis.

*4-32. The 20-N horizontal force acts on the handle of the socket wrench. Determine the moment of this force about point O. Specify the coordinate direction angles α , β , γ of the moment axis.

4–29. Determine the moment of the force **F** about point *O*. Express the result as a Cartesian vector.

4–30. Determine the moment of the force **F** about point *P*. Express the result as a Cartesian vector.

4

4–34. Determine the coordinate direction angles α , β , γ of force **F**, so that the moment of **F** about *O* is zero.

4–35. Determine the moment of force **F** about point *O*. The force has a magnitude of 800 N and coordinate direction angles of $\alpha = 60^{\circ}$, $\beta = 120^{\circ}$, $\gamma = 45^{\circ}$. Express the result as a Cartesian vector.

11005.4-54/55

*4-36. Determine the moment of the force of F = 600 N about point A.

4-37. Determine the smallest force F that must be applied along the rope in order to develop a moment of $M = 1500 \text{ N} \cdot \text{m}$ at A.

4–38. Force **F** acts perpendicular to the inclined plane. Determine the moment produced by **F** about point A. Express the result as a Cartesian vector.

4–39. Force **F** acts perpendicular to the inclined plane. Determine the moment produced by **F** about point *B*. Express the result as a Cartesian vector.

*4-40. The curved rod lies in the x-y plane and has a radius of 3 m. If a force of F = 80 N acts at its end as shown, determine the moment of this force about point O.

4–41. The curved rod lies in the x-y plane and has a radius of 3 m. If a force of F = 80 N acts at its end as shown, determine the moment of this force about point *B*.

Probs. 4-36/37

4–42. The pipe assembly is subjected to the 80-N force. Determine the moment of this force about point *A*.

4–43. The pipe assembly is subjected to the 80-N force. Determine the moment of this force about point *B*.

4-45. The cable exerts a 140-N force on the telephone pole. Determine the moment of this force about point *A*. Solve the problem using two different position vectors.

*4-44. A 20-N horizontal force is applied perpendicular to the handle of the socket wrench. Determine the magnitude and the coordinate direction angles of the moment created by this force about point *O*.

4-46. A force of $\mathbf{F} = \{6\mathbf{i} - 2\mathbf{j} + 1\mathbf{k}\}$ kN produces a moment of $\mathbf{M}_O = \{4\mathbf{i} + 5\mathbf{j} - 14\mathbf{k}\}$ kN \cdot m about the origin, point *O*. If the force acts at a point having an *x* coordinate of x = 1 m, determine the *y* and *z* coordinates. *Note:* The

4-47. The force $\mathbf{F} = \{6\mathbf{i} + 8\mathbf{j} + 10\mathbf{k}\}$ N creates a moment about point *O* of $\mathbf{M}_O = \{-14\mathbf{i} + 8\mathbf{j} + 2\mathbf{k}\}$ N · m. If the force passes through a point having an *x* coordinate of 1 m, determine the *y* and *z* coordinates of the point. Also, realizing that $M_O = Fd$, determine the perpendicular distance *d* from point *O* to the line of action of **F**. *Note:* The figure shows **F** and \mathbf{M}_O in an arbitrary position.

figure shows \mathbf{F} and \mathbf{M}_{O} in an arbitrary position.

Prob. 4-44

*4-48. Determine the moment of each force about point A. Add these moments and calculate the magnitude and coordinate direction angles of the resultant moment.

4–50. A force **F** having a magnitude of F = 100 N acts along the diagonal of the parallelepiped. Determine the moment of **F** about the point A, using $\mathbf{M}_A = \mathbf{r}_B \times \mathbf{F}$ and $\mathbf{M}_A = \mathbf{r}_C \times \mathbf{F}.$

4-49. Determine the moment about point O of each force acting on the pipe assembly. Add these moments and calculate the magnitude and coordinate direction angles of the resultant moment.

■ 4–51. Using a ring collar the 75-N force can act in the vertical plane at various angles θ . Determine the magnitude of the moment it produces about point A, plot the results of M (ordinate) versus θ (abscissa) for $0^{\circ} \le \theta \le 180^{\circ}$, and specify the angles that give the maximum and minimum moment.

