PROBLEMS

*4-52. Determine the moment of the force \mathbf{F} about the diagonal $A F$ of the rectangular block. Express the result as a Cartesian vector.

4-53. Determine the moment of the force \mathbf{F} about the diagonal $O D$ of the rectangular block. Express the result as a Cartesian vector.

Probs. 4-52/53

4-54. Determine the moment of force \mathbf{F} about the x, y, and z axes. Solve the problem (a) using a Cartesian vector approach and (b) using a scalar approach.

4-55. Determine the moment of force \mathbf{F} about an axis extending between O and A. Express the result as a Cartesian vector.

Probs. 4-54/55
*4-56. The board is used to hold the end of the cross lug wrench in the position shown when the man applies a force of $F=100$ N. Determine the magnitude of the moment produced by this force about the x axis. Force \mathbf{F} lies in a vertical plane.

4-57. The board is used to hold the end of the cross lug wrench in the position shown. If a torque of $30 \mathrm{~N} \cdot \mathrm{~m}$ about the x axis is required to tighten the nut, determine the required magnitude of the force \mathbf{F} needed to turn the wrench. Force \mathbf{F} lies in a vertical plane.

Probs. 4-56/57
4-58. The lug nut on the wheel of the automobile is to be removed using the wrench and applying the vertical force of $F=30 \mathrm{~N}$ at A. Determine if this force is adequate, provided $14 \mathrm{~N} \cdot \mathrm{~m}$ of torque about the x axis is initially required to turn the nut. If the $30-\mathrm{N}$ force can be applied at A in any other direction, will it be possible to turn the nut?
4-59. Solve Prob. 4-58 if the cheater pipe $A B$ is slipped over the handle of the wrench and the $30-\mathrm{N}$ force can be applied at any point and in any direction on the assembly.

Probs. 4-58/59
*4-60. Determine the magnitude of the moment of the force $\mathbf{F}=\{50 \mathbf{i}-20 \mathbf{j}-80 \mathbf{k}\} \mathrm{N}$ about member $A B$ of the tripod.

4-61. Determine the magnitude of the moment of the force $\mathbf{F}=\{50 \mathbf{i}-20 \mathbf{j}-80 \mathbf{k}\} \mathbf{N}$ about member $B C$ of the tripod.

4-62. Determine the magnitude of the moment of the force $\mathbf{F}=\{50 \mathbf{i}-20 \mathbf{j}-80 \mathbf{k}\} \mathbf{N}$ about member $C A$ of the tripod.

Probs. 4-60/61/62
4-63. The bevel gear is subjected to the force \mathbf{F} which is caused from contact with another gear. Determine the moment of this force about the y axis of the gear shaft.

Prob. 4-63
*4-64. A horizontal force of $\mathbf{F}=\{-50 \mathbf{i}\} \mathbf{N}$ is applied perpendicular to the handle of the pipe wrench. Determine the moment that this force exerts along the axis $O A$ (z axis) of the pipe assembly. Both the wrench and pipe assembly, $O A B C$, lie in the $y-z$ plane. Suggestion: Use a scalar analysis.

4-65. Determine the magnitude of the horizontal force $\mathbf{F}=-F \mathbf{i}$ acting on the handle of the wrench so that this force produces a component of the moment along the $O A$ axis (z axis) of the pipe assembly of $\mathbf{M}_{z}=\{4 \mathbf{k}\} \mathrm{N} \cdot \mathrm{m}$. Both the wrench and the pipe assembly, $O A B C$, lie in the $y-z$ plane. Suggestion: Use a scalar analysis.

Probs. 4-64/65
4-66. The force of $F=30 \mathrm{~N}$ acts on the bracket as shown. Determine the moment of the force about the $a-a$ axis of the pipe if $\alpha=60^{\circ}, \beta=60^{\circ}$, and $\gamma=45^{\circ}$. Also, determine the coordinate direction angles of F in order to produce the maximum moment about the $a-a$ axis. What is this moment?

Prob. 4-66

4-67. Determine the moment of this force \mathbf{F} about an axis extending between A and C. Express the result as a Cartesian vector.

Prob. 4-67
*4-68. If $\mathrm{F}=450 \mathrm{~N}$, determine the magnitude of the moment produced by this force about the x axis.

4-69. The friction at sleeve A can provide a maximum resisting moment of $125 \mathrm{~N} \cdot \mathrm{~m}$ about the x axis. Determine the largest magnitude of force \mathbf{F} that can be applied to the bracket so that the bracket will not turn.

Probs. 4-68/69

4-70. The wrench A is used to hold the pipe in a stationary position while wrench B is used to tighten the elbow fitting. If $F_{B}=150 \mathrm{~N}$, determine the magnitude of the moment produced by this force about the y axis. Also, what is the magnitude of force \mathbf{F}_{A} in order to counteract this moment?

4-71. The wrench A is used to hold the pipe in a stationary position while wrench B is used to tighten the elbow fitting. Determine the magnitude of force F_{B} in order to develop a moment of $50 \mathrm{~N} \cdot \mathrm{~m}$ about the y axis. Also, what is the required magnitude of force \mathbf{F}_{A} in order to counteract this moment?

Probs. 4-70/71
*4-72. The tool is used to shut off gas valves that are difficult to access. If the force \mathbf{F} is applied to the handle, determine the component of the moment created about the z axis of the valve.

Prob. 4-72

