PROBLEMS

4–126. Determine the magnitude and direction θ of force **F** and its placement *d* on the beam so that the loading system is equivalent to a resultant force of 12 kN acting vertically downward at point *A* and a clockwise couple moment of 50 kN · m.

4–127. Determine the magnitude and direction θ of force **F** and its placement *d* on the beam so that the loading system is equivalent to a resultant force of 10 kN acting vertically downward at point *A* and a clockwise couple moment of $45 \text{ kN} \cdot \text{m}$.

*4–128. Replace the loading acting on the beam by a single resultant force. Specify where the force acts, measured from end A.

4–129. Replace the loading acting on the beam by a single resultant force. Specify where the force acts, measured from B.

4–130. Replace the loading on the frame by a single resultant force. Specify where its line of action intersects a vertical line along member AB, measured from A.

4–131. Replace the loading on the frame by a single resultant force. Specify where its line of action intersects a horizontal line along member *CB*, measured from end *C*.

*4–132. Replace the loading on the frame by a single resultant force. Specify where its line of action intersects a vertical line along member *AB*, measured from *A*.

Prob. 4-132

4–133. Replace the loading on the frame by a single resultant force. Specify where its line of action intersects member AB, measured from A.

4–134. Replace the loading on the frame by a single resultant force. Specify where its line of action intersects member CD, measured from end C.

Probs. 4-133/134

4–135. Replace the force system acting on the post by a resultant force, and specify where its line of action intersects the post AB measured from point A.

*4–136. Replace the force system acting on the post by a resultant force, and specify where its line of action intersects the post AB measured from point B.

4–137. The building slab is subjected to four parallel column loadings. Determine the equivalent resultant force and specify its location (x, y) on the slab. Take $F_1 = 30$ kN, $F_2 = 40$ kN.

4–138. The building slab is subjected to four parallel column loadings. Determine the equivalent resultant force and specify its location (x, y) on the slab. Take $F_1 = 20$ kN, $F_2 = 50$ kN.

4–139. The building slab is subjected to four parallel column loadings. Determine the equivalent resultant force and specify its location (x, y) on the slab. Take $F_1 = 8$ kN and $F_2 = 9$ kN.

*4–140. The building slab is subjected to four parallel column loadings. Determine \mathbf{F}_1 and \mathbf{F}_2 if the resultant force acts through point (12 m, 10 m).

Probs. 4–135/136

Probs. 4–139/140

4–141. If $F_A = 7 \text{ kN}$ and $F_B = 5 \text{ kN}$, represent the force system by a resultant force, and specify its location on the *x*-*y* plane.

4–142. Determine the magnitudes of \mathbf{F}_A and \mathbf{F}_B so that the resultant force passes through point *O*.

Probs. 4-141/142

4–145. Three parallel bolting forces act on the circular plate. Determine the resultant force, and specify its location (x, z) on the plate. $F_A = 900 \text{ N}, F_B = 450 \text{ N}, \text{and } F_C = 1.80 \text{ kN}.$

4–146. The three parallel bolting forces act on the circular plate. If the force at *A* has a magnitude of $F_A = 900$ N, determine the magnitudes of \mathbf{F}_B and \mathbf{F}_C so that the resultant force \mathbf{F}_R of the system has a line of action that coincides with the *y* axis. *Hint:* This requires $\Sigma M_x = 0$ and $\Sigma M_z = 0$.

Probs. 4-145/146

4–143. If $F_A = 40$ kN and $F_B = 35$ kN, determine the magnitude of the resultant force and specify the location of its point of application (*x*, *y*) on the slab.

*4–144. If the resultant force is required to act at the center of the slab, determine the magnitude of the column loadings \mathbf{F}_A and \mathbf{F}_B and the magnitude of the resultant force.

*4–148. The pipe assembly is subjected to the action of a wrench at B and a couple at A. Determine the magnitude F of the couple forces so that the system can be simplified to a wrench acting at point C.

4–150. Replace the three forces acting on the plate by a wrench. Specify the magnitude of the force and couple moment for the wrench and the point P(x, y) where the wrench intersects the plate.

4–149. The pipe assembly is subjected to the action of a wrench at *B* and a couple at *A*. Simplify this system to a resultant wrench and specify the location of the wrench along the axis of pipe *CD*, measured from point *C*. Set F = 40 N.

4–151. Replace the three forces acting on the plate by a wrench. Specify the magnitude of the force and couple moment for the wrench and the point P(y, z) where its line of action intersects the plate.

Prob. 4-149

Prob. 4-151