PROBLEMS

4-126. Determine the magnitude and direction θ of force \mathbf{F} and its placement d on the beam so that the loading system is equivalent to a resultant force of 12 kN acting vertically downward at point A and a clockwise couple moment of $50 \mathrm{kN} \cdot \mathrm{m}$.

4-127. Determine the magnitude and direction θ of force \mathbf{F} and its placement d on the beam so that the loading system is equivalent to a resultant force of 10 kN acting vertically downward at point A and a clockwise couple moment of $45 \mathrm{kN} \cdot \mathrm{m}$.

Probs. 4-126/127
*4-128. Replace the loading acting on the beam by a single resultant force. Specify where the force acts, measured from end A.

4-129. Replace the loading acting on the beam by a single resultant force. Specify where the force acts, measured from B.

Probs. 4-128/129

4-130. Replace the loading on the frame by a single resultant force. Specify where its line of action intersects a vertical line along member $A B$, measured from A.

4-131. Replace the loading on the frame by a single resultant force. Specify where its line of action intersects a horizontal line along member $C B$, measured from end C.

Probs. 4-130/131
*4-132. Replace the loading on the frame by a single resultant force. Specify where its line of action intersects a vertical line along member $A B$, measured from A.

Prob. 4-132

4-133. Replace the loading on the frame by a single resultant force. Specify where its line of action intersects member $A B$, measured from A.

4-134. Replace the loading on the frame by a single resultant force. Specify where its line of action intersects member $C D$, measured from end C.

Probs. 4-133/134

4-135. Replace the force system acting on the post by a resultant force, and specify where its line of action intersects the post $A B$ measured from point A.
*4-136. Replace the force system acting on the post by a resultant force, and specify where its line of action intersects the post $A B$ measured from point B.

Probs. 4-135/136

4-137. The building slab is subjected to four parallel column loadings. Determine the equivalent resultant force and specify its location (x, y) on the slab. Take $F_{1}=30 \mathrm{kN}$, $F_{2}=40 \mathrm{kN}$.

4-138. The building slab is subjected to four parallel column loadings. Determine the equivalent resultant force and specify its location (x, y) on the slab. Take $F_{1}=20 \mathrm{kN}$, $F_{2}=50 \mathrm{kN}$.

Probs. 4-137/138

4-139. The building slab is subjected to four parallel column loadings. Determine the equivalent resultant force and specify its location (x, y) on the slab. Take $F_{1}=8 \mathrm{kN}$ and $F_{2}=9 \mathrm{kN}$.
*4-140. The building slab is subjected to four parallel column loadings. Determine \mathbf{F}_{1} and \mathbf{F}_{2} if the resultant force acts through point $(12 \mathrm{~m}, 10 \mathrm{~m})$.

Probs. 4-139/140

4-141. If $F_{A}=7 \mathrm{kN}$ and $F_{B}=5 \mathrm{kN}$, represent the force system by a resultant force, and specify its location on the $x-y$ plane.
4-142. Determine the magnitudes of \mathbf{F}_{A} and \mathbf{F}_{B} so that the resultant force passes through point O.

Probs. 4-141/142

4-143. If $F_{A}=40 \mathrm{kN}$ and $F_{B}=35 \mathrm{kN}$, determine the magnitude of the resultant force and specify the location of its point of application (x, y) on the slab.
*4-144. If the resultant force is required to act at the center of the slab, determine the magnitude of the column loadings \mathbf{F}_{A} and \mathbf{F}_{B} and the magnitude of the resultant force.

4-145. Three parallel bolting forces act on the circular plate. Determine the resultant force, and specify its location (x, z) on the plate. $F_{A}=900 \mathrm{~N}, F_{B}=450 \mathrm{~N}$, and $F_{C}=1.80 \mathrm{kN}$.
4-146. The three parallel bolting forces act on the circular plate. If the force at A has a magnitude of $F_{A}=900 \mathrm{~N}$, determine the magnitudes of \mathbf{F}_{B} and \mathbf{F}_{C} so that the resultant force \mathbf{F}_{R} of the system has a line of action that coincides with the y axis. Hint: This requires $\Sigma M_{x}=0$ and $\Sigma M_{z}=0$.

Probs. 4-145/146

4-147. The tube supports the four parallel forces. Determine the magnitudes of forces \mathbf{F}_{C} and \mathbf{F}_{D} acting at C and D so that the equivalent resultant force of the force system acts through the midpoint O of the tube.

Probs. 4-143/144

Prob. 4-147
*4-148. The pipe assembly is subjected to the action of a wrench at B and a couple at A. Determine the magnitude F of the couple forces so that the system can be simplified to a wrench acting at point C.

Prob. 4-148

4-149. The pipe assembly is subjected to the action of a wrench at B and a couple at A. Simplify this system to a resultant wrench and specify the location of the wrench along the axis of pipe $C D$, measured from point C. Set $F=40 \mathrm{~N}$.

Prob. 4-149

4-150. Replace the three forces acting on the plate by a wrench. Specify the magnitude of the force and couple moment for the wrench and the point $P(x, y)$ where the wrench intersects the plate.

Prob. 4-150

4-151. Replace the three forces acting on the plate by a wrench. Specify the magnitude of the force and couple moment for the wrench and the point $P(y, z)$ where its line of action intersects the plate.

Prob. 4-151

